1,198 research outputs found

    Spectroscopy of Globular Clusters in M81

    Get PDF
    We present moderate-resolution spectroscopy of globular clusters (GCs) around the Sa/Sb spiral galaxy M81 (NGC 3031). Sixteen candidate clusters were observed with the Low Resolution Imaging Spectrograph on the Keck I telescope. All are confirmed as bona fide GCs, although one of the clusters appears to have been undergoing a transient event during our observations. In general, the M81 globular cluster system (GCS) is found to be very similar to the Milky Way (MW) and M31 systems, both chemically and kinematically. A kinematic analysis of the velocities of 44 M81 GCS, (the 16 presented here and 28 from previous work) strongly suggests that the red, metal-rich clusters are rotating in the same sense as the gas in the disk of M81. The blue, metal-poor clusters have halo-like kinematics, showing no evidence for rotation. The kinematics of clusters whose projected galactocentric radii lie between 4 and 8 kpc suggest that they are rotating much more than those which lie outside these bounds. We suggest that these rotating, intermediate-distance clusters are analogous to the kinematic sub-population in the metal-rich, disk GCs observed in the MW and we present evidence for the existence of a similar sub-population in the metal-rich clusters of M31. With one exception, all of the M81 clusters in our sample have ages that are consistent with MW and M31 GCs. One cluster may be as young as a few Gyrs. The correlations between absorption-line indices established for MW and M31 GCs also hold in the M81 cluster system, at least at the upper end of the metallicity distribution (which our sample probes). On the whole, the mean metallicity of the M81 GCS is similar to the metallicity of the MW and M31 GCSs. The projected mass of M81 is similar to the masses of the MW and M31. Its mass profile indicates the presence of a dark matter halo.Comment: 35 pages, including 11 figures and 9 tables. Accepted for publication in the Astronomical Journa

    The Chemical Properties of Milky Way and M31 Globular Clusters: I. A Comparative Study

    Full text link
    A comparative analysis is performed between high-quality integrated spectra of 30 globular clusters in M31, 20 Milky Way clusters, and a sample of field and cluster elliptical galaxies. We find that the Lick CN indices in the M31 and Galactic clusters are enhanced relative to the bulges of the Milky Way, M31, and elliptical spheroids. Although not seen in the Lick CN indices, the near-UV cyanogen feature (3883 A) is strongly enhanced in M31 clustesr with respect to the Galactic globulars at metallicities, --1.5<[Fe/H]<--0.3. Carbon shows signs of varying amongst these two groups. For [Fe/H]>--0.8, we observe no siginificant differences in the Hdelta, Hgamma, or Hbeta indices between the M31 and Galactic globulars. The sample of ellipticals lies offset from the loci of all the globulars in the Cyanogen--[MgFe], and Balmer--[MgFe] planes. Six of the M31 cluster spectra appear young, and are projected onto the M31 disk. Population synthesis models suggest that these are metal-rich clusters with ages 100--800 Myr, metallicities --0.20 < [Fe/H] <0.35, and masses 0.7 -7.0x10^4 Msun. Two other young clusters are Hubble V in NGC 205, and an older (~3 Gyr) cluster ~7 kpc away from the plane of the disk. The six clusters projected onto the disk rotate in a similar fashion to the HI gas in M31, and three clusters exhibit thin disk kinematics (Morrison et al.). Dynamical masses and structural parameters are required for these objects to determine whether they are massive open clusters or globular clusters. If the latter, our findings suggest globular clusters may trace the build up of galaxy disks. In either case, we conclude that these clusters are part of a young, metal-rich disk cluster system in M31, possibly as young as 1 Gyr old.Comment: 52 pages, 14 figures, 8 tables, minor revisions in response to referee, conclusions remain the same. Scheduled to appear in the October 2004 issue of The Astronomical Journa

    The Kinematics and Metallicity of the M31 Globular Cluster System

    Full text link
    With the ultimate aim of distinguishing between various models describing the formation of galaxy halos (e.g. radial or multi-phase collapse, random mergers), we have completed a spectroscopic study of the globular cluster system of M31. We present the results of deep, intermediate-resolution, fibre-optic spectroscopy of several hundred of the M31 globular clusters using the Wide Field Fibre Optic Spectrograph (WYFFOS) at the William Herschel Telescope in La Palma, Canary Islands. These observations have yielded precise radial velocities (+/-12 km/s) and metallicities (+/-0.26 dex) for over 200 members of the M31 globular cluster population out to a radius of 1.5 degrees from the galaxy center. Many of these clusters have no previous published radial velocity or [Fe/H] estimates, and the remainder typically represent significant improvements over earlier determinations. We present analyses of the spatial, kinematic and metal abundance properties of the M31 globular clusters. We find that the abundance distribution of the cluster system is consistent with a bimodal distribution with peaks at [Fe/H] = -1.4 and -0.5. The metal-rich clusters demonstrate a centrally concentrated spatial distribution with a high rotation amplitude, although this population does not appear significantly flattened and is consistent with a bulge population. The metal-poor clusters tend to be less spatially concentrated and are also found to have a strong rotation signature.Comment: 33 pages, 20 figure

    The outermost cluster of M31

    Full text link
    We report on the identification of a new cluster in the far halo of the M31 galaxy. The cluster, named Bologna 514 (B514) has an integrated magnitude M_V=-8.5 +- 0.6, and a radial velocity, as estimated from two independent low-resolution spectra, V_r=-456 +- 23 km/s, which fully confirms its membership to the M31 system. The observed integrated spectrum is very similar to those of classical globular clusters. Being located at ~ 4^o (~55 kpc in projected distance) from the center of the parent galaxy, B514 is by far the most remote M31 cluster ever discovered. Its projected position, near the galaxy major axis, and M31-centric velocity, similar to that observed in the outermost regions of the HI rotation curve, may indicate that it belongs to the subsystem of M31 clusters that has been recently proposed (Morrison et al. 2004) to be part of the dynamically-cold thin disc of the galaxy.Comment: 6 pages, 4 figures, accepted for publication in A &

    The Specific Globular Cluster Frequencies of Dwarf Elliptical Galaxies from the Hubble Space Telescope

    Full text link
    The specific globular cluster frequencies (S_N) for 24 dwarf elliptical (dE) galaxies in the Virgo and Fornax Clusters and the Leo Group imaged with the Hubble Space Telescope are presented. Combining all available data, we find that for nucleated dEs --- which are spatially distributed like giant ellipticals in galaxy clusters --- S_N(dE,N)=6.5 +- 1.2 and S_N increases with M_V, while for non-nucleated dEs --- which are distributed like late-type galaxies --- S_N(dE,noN)=3.1 +- 0.5 and there is little or no trend with M_V. The S_N values for dE galaxies are thus on average significantly higher than those for late-type galaxies, which have S_N < 1. This suggests that dE galaxies are more akin to giant Es than to late-type galaxies. If there are dormant or stripped irregulars hiding among the dE population, they are likely to be among the non-nucleated dEs. Furthermore, the similarities in the properties of the globular clusters and in the spatial distributions of dE,Ns and giant Es suggest that neither galaxy mass or galaxy metallicity is responsible for high values of S_N. Instead, most metal-poor GCs may have formed in dwarf-sized fragments that merged into larger galaxies.Comment: 12 pages (uses aaspp4.sty), 2 figures, 1 table, to appear in the Astrophysical Journa
    corecore